Neural network and regression spline value function approximations for stochastic dynamic programming

نویسندگان

  • Cristiano Cervellera
  • Aihong Wen
  • Victoria C. P. Chen
چکیده

Dynamic programming is a multi-stage optimization method that is applicable to many problems in engineering. A statistical perspective of value function approximation in highdimensional, continuous-state stochastic dynamic programming (SDP) was first presented using orthogonal array (OA) experimental designs and multivariate adaptive regression splines (MARS). Given the popularity of artificial neural networks (ANNs) for high-dimensional modeling in engineering, this paper presents an implementation of ANNs as an alternative to MARS. Comparisons consider the differences in methodological objectives, computational complexity, model accuracy, and numerical SDP solutions. Two applications are presented: a ninedimensional inventory forecasting problem and an eight-dimensional water reservoir problem. Both OAs and OA-based Latin hypercube experimental designs are explored, and OA spacefilling quality is considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating scour below inverted siphon structures using stochastic and soft computing approaches

This paper uses nonlinear regression, Artificial Neural Network (ANN) and Genetic Programming (GP) approaches for predicting an important tangible issue i.e. scours dimensions downstream of inverted siphon structures. Dimensional analysis and nonlinear regression-based equations was proposed for estimation of maximum scour depth, location of the scour hole, location and height of the dune downs...

متن کامل

A Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process

Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...

متن کامل

Optimization Model of Hirmand River Basin Water Resources in the Agricultural Sector Using Stochastic Dynamic Programming under Uncertainty Conditions

In this study, water management allocated to the agricultural sector’ was analyzed using stochastic dynamic programming under uncertainty conditions. The technical coefficients used in the study referred to the agricultural years, 2013-2014. They were obtained through the use of simple random sampling of 250 farmers in the region for crops wheat, barley, melon, watermelon and ruby grapes under ...

متن کامل

Extracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

متن کامل

Expected Duration of Dynamic Markov PERT Networks

Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2007